
Assessing land nitrogen budgets for Danish agriculture

Wim de Vries Hans Kros, Gert Jan Reinds

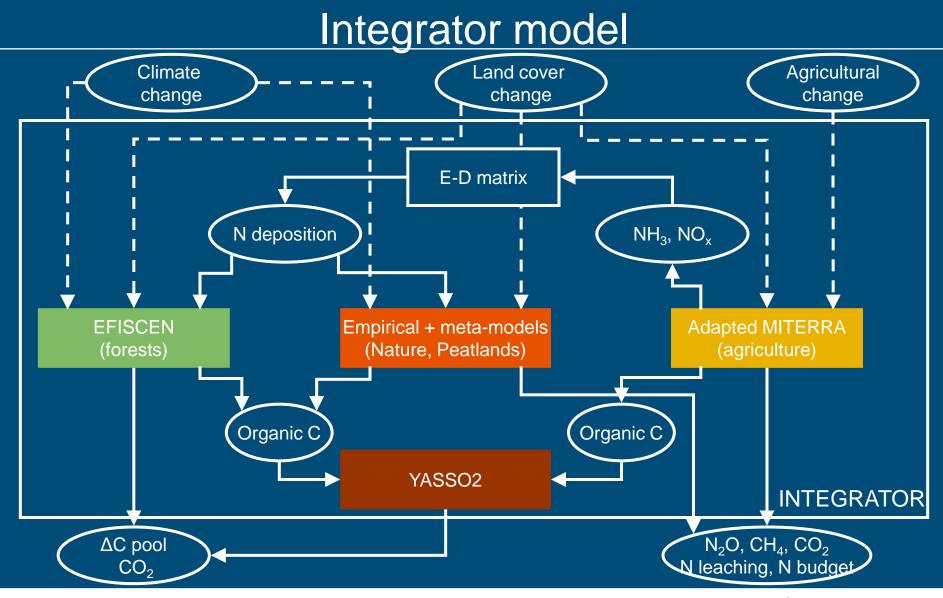
<u>Contents</u>

The Model INTEGRATOR

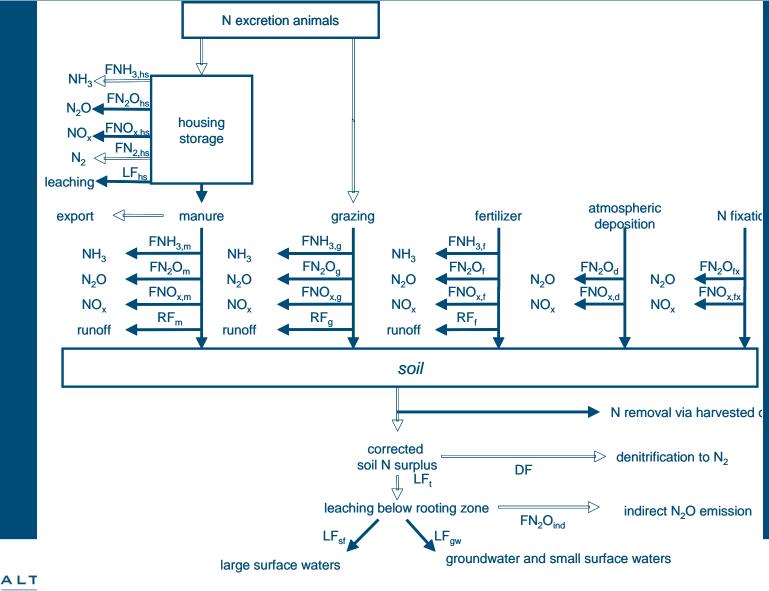
 Methods and data sources for spatially explicit agricultural N budgets

Disaggregated agricultural N budget for Denmark

Impacts of measures to mitigate N losses: Example of INTEGRATOR results


The model INITEGRATOR

© Wageningen UR

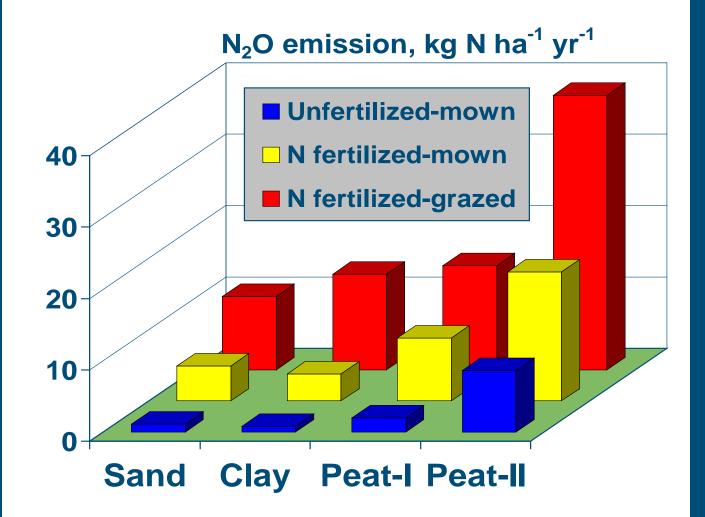


The MITERRA model: Schematic overview

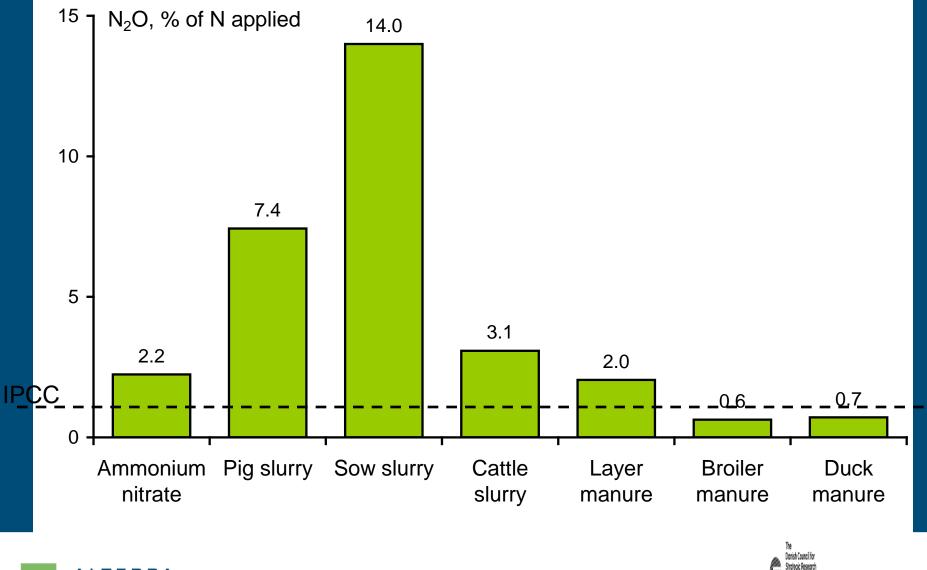
F emission fraction, L leaching fraction, D denitrification fraction, R runoff fraction.

Adaptations MITERRA in INTEGRATOR

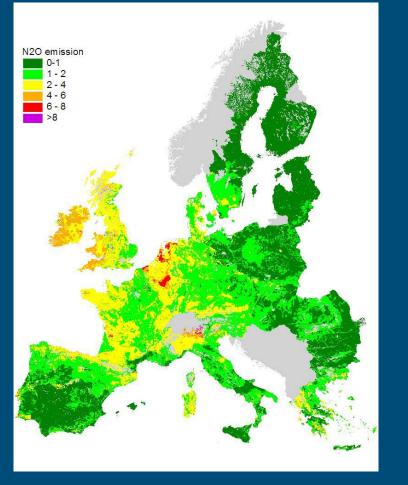
Aspect	MITERRA	MITERRA in INTEGRATOR
Tool	Stand alone policy tool (DG ENV)	Research model
Scale	NUTS 2	NCUs
Time aspect	Steady state model	Build in a dynamic environment
N manure input	Manure distribution model	Adapted from MITERRA-EUROPE
Ammonia	From RAINS	From MITERRA-EUROPE
emission		
N leaching	MITERRA leaching model	From MITERRA-EUROPE
Nitrous oxide	From GAINS	Emission factors as a function of
emission		manure type, land use, soil type etc. In
		future including interactions N and C.

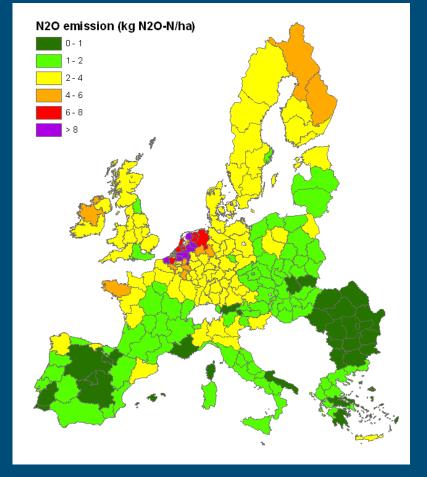

Parameterization of N₂O emissions in

N source	Type IN		Roil type	Land use	Precip	рН	temp
Fertilizer	nitrate fertilizer ammonium fertilizer urea						
Manure	pig slurry	surface/ incorporation					
	pig solid manure cattle slurry						
	cattle soilid manure	surface/ incorporation	sand/ clay/	grassland/ arable	3	2	3
	poultry manure grazing other manure		peat land		groups	groups	groups
Soil organic N	nett mineralization						
iological N fixation							
Atmospheric deposition							
Crop residues	cereals vegetables arable crops						


Effect of soil type and management

Effect of fertilizer and manure type

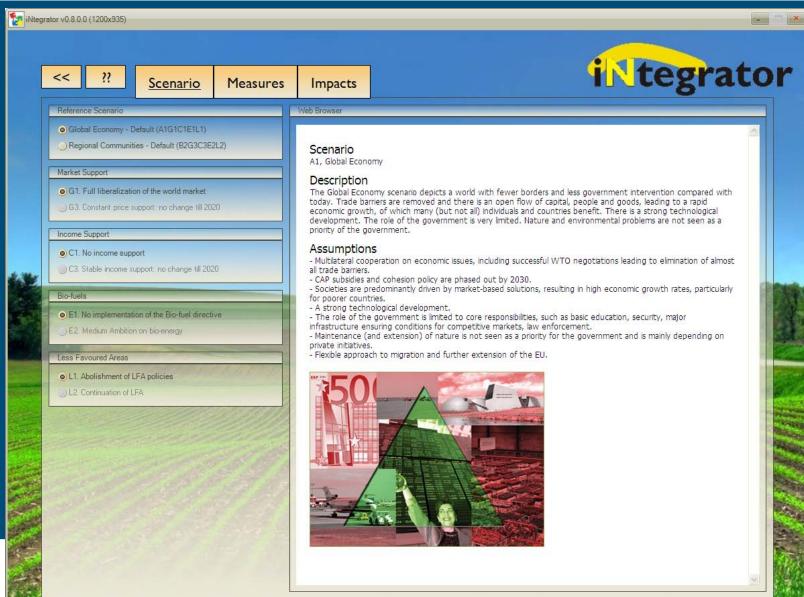


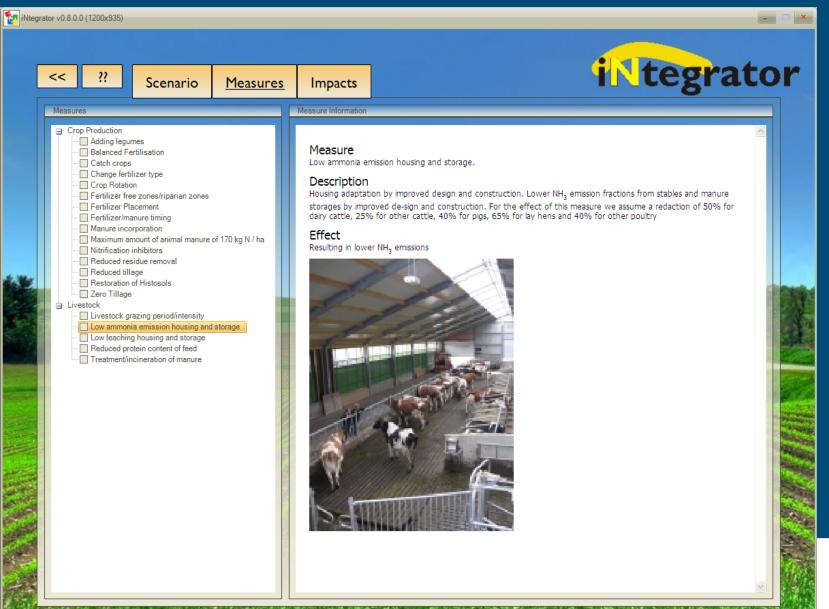

IMARK

Research Alliance

European wide N₂O emissions

Integrator


<u>Startup</u>



Scenarios

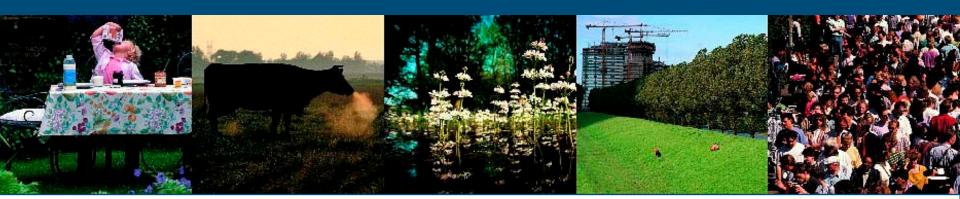
100%

Measures

Impacts

iNteg	rator v0.8.0.0 (1200x935)				
[<< ?? Scenario	Measures	Impacts	iNt	egrator
	Simulation Settings Simulation: Current Spr Indicator: Ndep		p]	# 	
	Landuse: Agric Scale: V Time:		Simulation Settin	gs Current Simulation	
6¥	Sim- Mterra emission factors	F	Indicator:	Ndep (LandUse)	
	Show Options Display Data As: Map Show	•	Landuse: Scale:	Agriculture (Arable&Grass)	
		Show	Time:	2030	
			Simulation Mode		
	100% Application Ready	X 23 30 - N M			

Compare: maps


Simulations Maps Graph XY Graph CF Time Series Table Tegrato	or
Simulation #1 Simulation #2 Actions	
Simulation: std A1 Simulation: b2 std Indicator: NH3emis (Land Use) Indicator: NH3emis (Land Use) Landuse: Agriculture (Arable&Grass) Landuse: Agriculture (Arable&Grass)	
Scale: NCU Scale: NCU	
Time: 2020 Time: 2020	
Map #1 Map #2 Map #2-#1	
100% Application Ready	

Methods and data sources for spatially explicit agricultural N budgets

© Wageningen UR

Schematization

- Use of NitroEurope Classification Units (NCUs): polygons of clusters of 1 km x 1 km pixels. NCU is unique combination of
 - administrative unit (Nomenclature of Territorial Units NUTS2 and NUTS3)
 - soil mapping units (SMU; Soil Geographic Database SGDB classification)
 - slope class (Catchment Characterisation and Modelling Digital Elevation Model, CCM 250 DEM)

Schematization

Each soil mapping unit (SMU), consists of a number of soil types (STU) with a known aerial fraction but unknown location within the SMU: we now use the dominant STU per polygon.

Approximately 40 000 NCU's for whole of Europe and 142 in Denmark

Geographic data on land cover and land use

Land cover

- CLUE model outcome, based on CORINE 2000.
- Includes arable, grass, rough grazing, forests, wetlands

Land use

- crops: CAPRI-DNDC data for arable land.
- Tree species: EFISCEN database for forest land

Geographic data on livestock and soil

properties

Livestock

- FAO database at country level and CAPRI data for distribution at NUTS 2/3 level. 4 in Denmark
- Downscaled to NCUs: ca. 140. Just simple area weighted approach; more elaborated approach in execution.

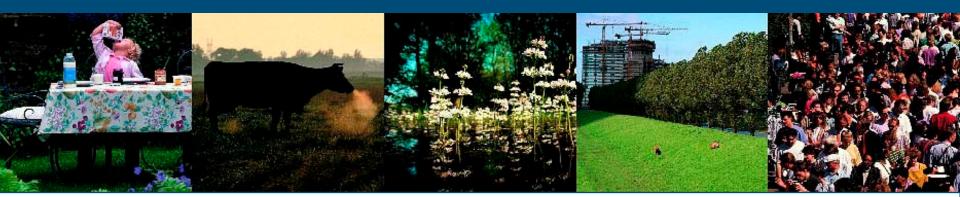
Soil properties

- Based on upscaled SPADE/WISE database
- Includes texture class, C content and C/N ratio

Approaches to estimate nitrogen inputs

Data for N inputs	Derivation
N fertilizer application	FAO/ IFA/ IFDC data
N manure excretion	N excretion factor model scaled to GAINS data in 2000 multiplied by livestock numbers (FAO data at country level; CAPRI data at NUTS 2/3 level: downscaled to NCUs)
N deposition levels	EMEP model estimates
N Fixation rates	2 kg N ha ⁻¹ for arable land 5 kg N ha ⁻¹ and grassland 1.2-1.3 times the harvested N amount for pulses/legumes

Approaches to estimate nitrogen outputs


Data for N outputs	Derivation
Crop yields	FAO database; applied for 31 CAPRI crops
Nitrogen contents	N contents varying with N input
in crops	
N emission	NH ₃ emission: country specific data from GAINS model
fractions to air	N ₂ O emission: function of N source, application technique, soil
	type, pH, land use, precipitation
N loss fractions to	N leaching: function of N surplus, soil, land use, organic matter
water	content, precipitation surplus, temperature and rooting depth after MITERRA
	N surface runoff: function of N manure and N fertilizer input, slope,
	land use, precipitation, soil type and depth to rock after MITERRA
	N subsurface runoff: function of slope, effective porosity and
	ground water level after Keuskamp et al (2012)

Disaggregated agricultural N budget for Denmark

© Wageningen UR

Farm, land and soil nitrogen budgets

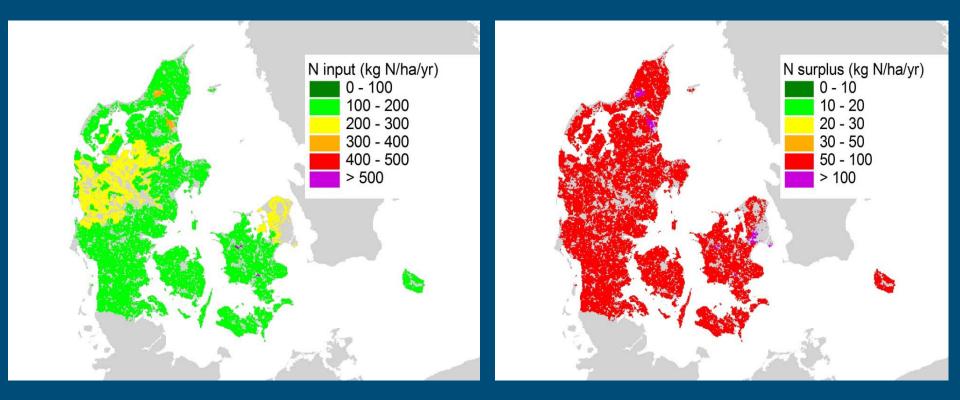
Gate	Budget		N Inputs	N Outputs	N Surplus ¹
	Simple	Detailed			
Farm	Farm N budget	Agricultural system budget	Fertilizer, feed (concentrates), external organic N sources, biological N fixation and deposition	Sold animal (meat, milk etc.) and crop products.	N (NH ₃ ,N ₂ O,NO _x N ₂) emissions and N leaching/ runoff from housing and manure storage systems and soil
Land	<i>Gross N budget (OECD approach)</i>	Land system budget	Fertilizer, manure excretion, organic sources, N fixation, N deposition, net N manure import/ export/ withdrawals	Harvest of crop products or above ground grass removal	N (NH ₃ ,N ₂ O,NO _x N ₂) emissions and N leaching/ runoff from housing and manure storage systems and soil
Soil	Soil N budget	Soil system budget	fertilizer, manure application, grazing inputs, organic sources, N fixation and N deposition	Removal of crop products or above ground grass removal	N (NH ₃ , N ₂ O, NO _x and N ₂) emissions and N leaching/ runoff from soil
' N Suri	olus is specifie	d in the detailed	d N-budaets		

N surplus is specified in the detailed N-budgets

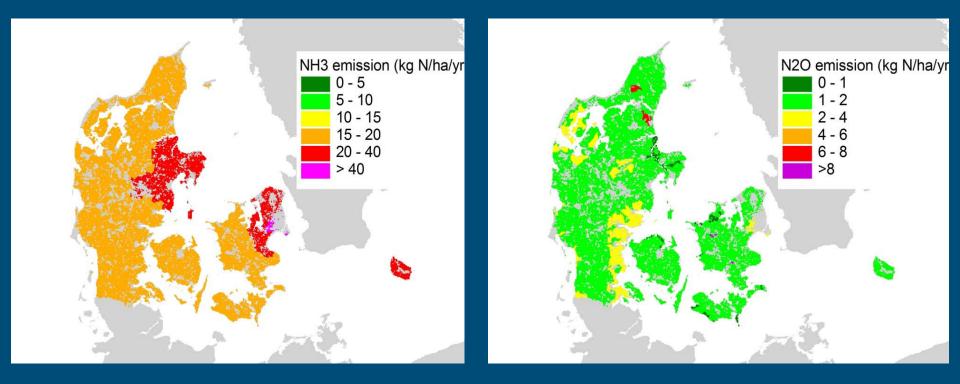
Calculated range in N inputs for arable - and grassland

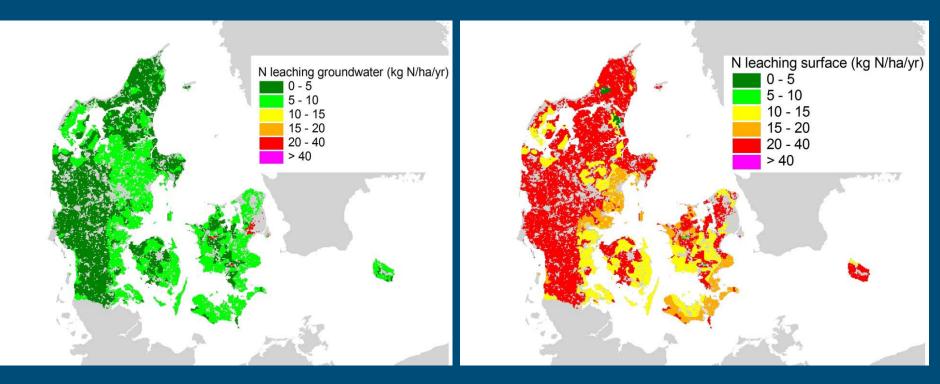
N input	arable				grass	
(kg N ha ⁻¹)	5%	50%	95%	5%	50%	95%
Biological fixation	5	5	5	5	5	5
Manure excretion	62	67	72	140	162	264
Synthetic fertiliser	74	82	85	0	71	84
Atmospheric deposition	9	12	13	9	12	13
Mineralisation	21	23	41	-3	-3	-2
Total	187	192	202	236	249	327

Calculated range in N budgets for arable and


grassland

N flux	arable			<u> </u>	grass	
(kg N ha⁻¹)	5%	50%	95%	5%	50%	95%
Total input	187	192	202	236	249	327
Plant removal	118	120	129	137	144	189
N surplus	68	71	78	99	106	133
Emissions of						
NH ₃	18	19	20	26	28	39
N ₂ O	1	2	2	2	3	5
NO and NO ₂	1	1	1	1	1	3
N ₂	21	22	28	51	56	77
N leaching+ runoff	20	27	29	15	20	24


Total N input en N surplus in arable land


NH₃ and N₂O emissions from arable land

N leaching to ground water and surface water from arable land

Conclusions DNMARK application

A maximum N application rate by animal manure of 170 kg N/ha/yr is only exceeded on grassland. DNMARK has a derogation up to 230 kg N/ha/yr, which is exceeded in few areas.

The estimated variation in N inputs is far too limited and needs update: first use of downscaled 1 km x 1km animal number data followed by N fertilizer and livestock data from Danish municipalities.

Mitigation analysis with INTEGRATOR

Aim mitigation study

 Assess effectiveness of ammonia mitigation options for nitrous oxide emissions (co-benefits versus pollution swapping)

A. Livestock management, housing and manure storage

• B. Soil nutrient management

• C. Water management

Livestock management, Housing and manure

- I. Reduced protein content of feed
 - Reduction in N excretion:
 - 15% for cattle
 - 20% for pigs
 - 20% for laying hens and 10% for other poultry
 - \rightarrow Lower N input

- 2. Low ammonia emission housing and storage
 - Reduction in NH₃ emission
 - Lower N deposition \rightarrow Lower indirect emission
 - Higher N content in manure → Higher N input → Pollution swapping

Nutrient management: soil

- 3. Balanced fertilization
 - \rightarrow Lower N input
- 4. Maximum manure application rate
 - \rightarrow Lower N input
 - May be compensated by fertilizer
- 5. Manure incorporation
 - \rightarrow Lower NH₃ emissions
 - \rightarrow Higher N₂O emission
- 6. Urea substitution by NO₃ fertilizers
 - \rightarrow Lower NH₃ emissions
 - \rightarrow Higher N₂O emission

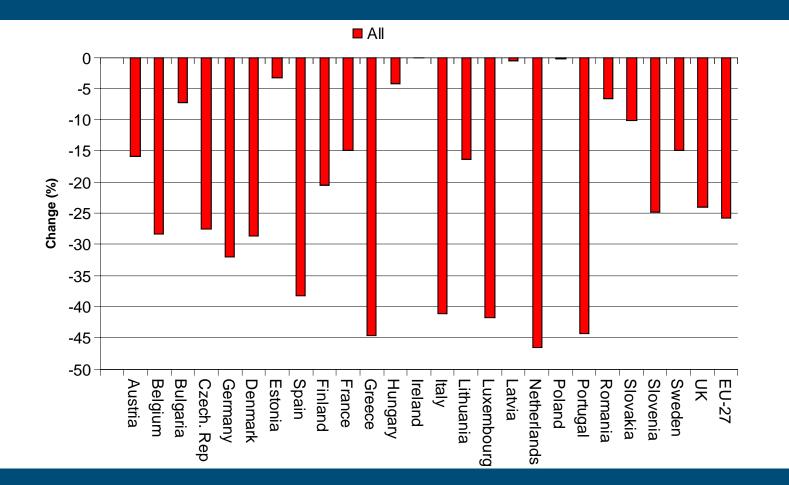
Water management

7. Restoration histosols

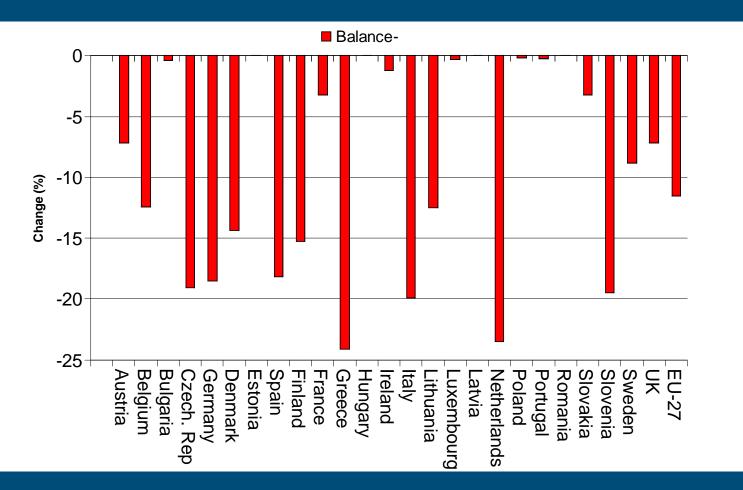
- Mean summer groundwater level \rightarrow 10 cm
- No fertilizer application
- → Lower C and N mineralisation
- \rightarrow Lower N input

Response to various mitigation measures

Relative changes in N_2O emission (%) for EU27


Measure	Housing and storage	Manure and fertilizer ap- plication	Other N in- puts ¹⁾	Total				
1. Reduced protein content	-1.4	-0.5	0.0	-1.9				
2. Low $NH_{3 em}$ housing, storage	0.0	0.0	0.0	0.0				
3. Balanced fertilization	0.0	-8.8	-2.7	-11.5				
4. Max manure application rate	0.0	-7.1	0.1	-7.0				
5. Manure incorporation	0.0	0.2	0.0	0.2				
6. Urea substitution	0.0	-0.3	0.0	-0.3				
7. Restoration histosols	0.0	-0.8	-0.2	-1.0				
All measures	-1.4	-17.4	-2.7	-21.5				
¹⁾ Includes emission through soil inputs by deposition, mineralization, fixation and crop								

residues


Effect of all measures per country

Effect of Balanced fertilization

Concluding remarks

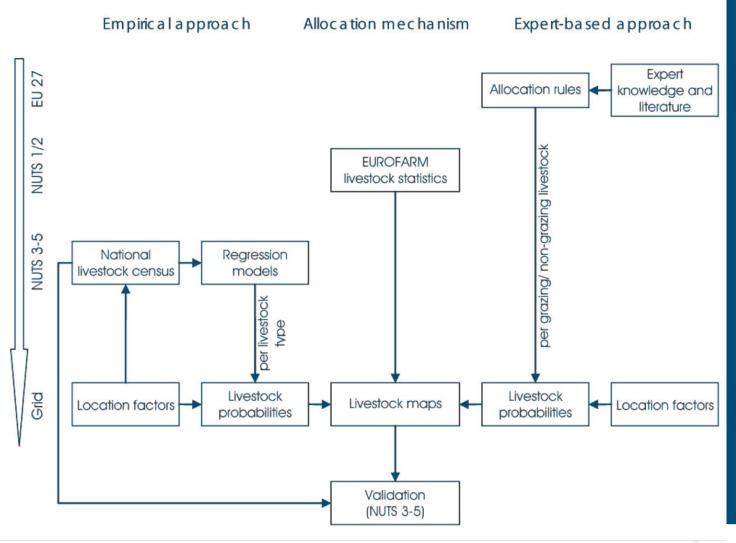
 INTEGRATOR can contribute to national N budget for the period 1990-2010 for agricultural land, forest land, seminatural areas, ground water and surface waters.

The regionalized N budget will be updated by making use of: (i) 1 km x 1km livestock data for Europe (more differentiation in N manure input in NCUs) and (ii) data for the 95 municipalities in Denmark.

INTEGRATOR can contribute to scenario assessments: predictions up to 2030 available for A1 and B2 scenarios.

Questions?

© Wageningen UR


Assessment of 1 km x 1km livestock distributions in Europe

- Expert-based approach: specification of land-related suitability rules based on case study evidence and system understanding for the whole of Europe
- Empirical approach: assessment of statistical relationships between observed livestock numbers and independent variables (soil types, climate, geomorphology, and population distribution) for a selection of countries
- Patterns retrieved by both methods were validated by comparing with spatially detailed national census data and a random distribution model

Downscaling methodology

Model validation

Correspondence (r^2) between national census data and livestock maps applying a downscaling procedure (d) and a random distribution model (r)

Country	Spatial detail of EUROFARM data	Spatial detail of national census data	Year of national census data	Dairy catt	le	Pigs	
				d	r	d	r
Denmark	NUTS 1 (n=1)	NUTS 5 (n-277)	2000	.47	.59	.63	.54
Finland	NUTS 2 (n=4)	NUTS 3 (n=20)	2002	.77	.10	.81	.27
Germany	NUTS 1 (n=14)	NUTS 3 (n=439)	2001	.86	.54	.38	.38
Hungary	NUTS 2 (n=7)	NUTS 3 (n=20)	2003	.61	.57	.77	.73
Netherlands	NUTS 2 (n=4)	NUTS 4 (n=488)	2003	.74	.47	.25	.39
Romania*	NUTS 2 (n=8)	NUTS 3 (n=42)	2002	-	-	.46	.22
Spain	NUTS 2 (n=17	NUTS 3 (n=50)	2001	.69	.71	-	-
Sweden	NUTS 2 (n=8)	NUTS 3 (n=21)	2003	.92	.86	.91	.83

Initial livestock distribution

W. Barting and

Neumann et al., 2009

Total livestock density

Low

High