

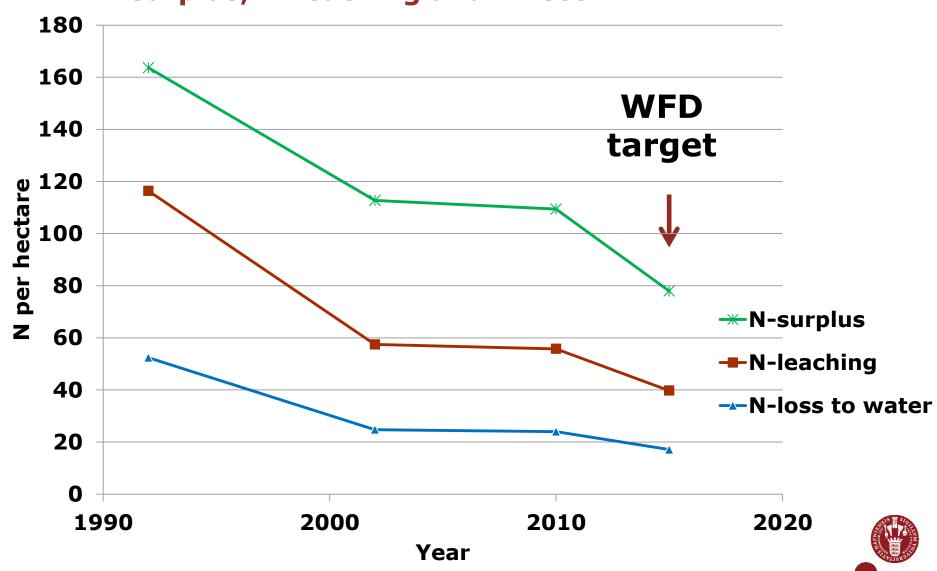
Site-specific N-regulation in Denmark - a follow up on NLK recommendations

Brian H. Jacobsen

Department of Food and Resource Economics (IFRO)

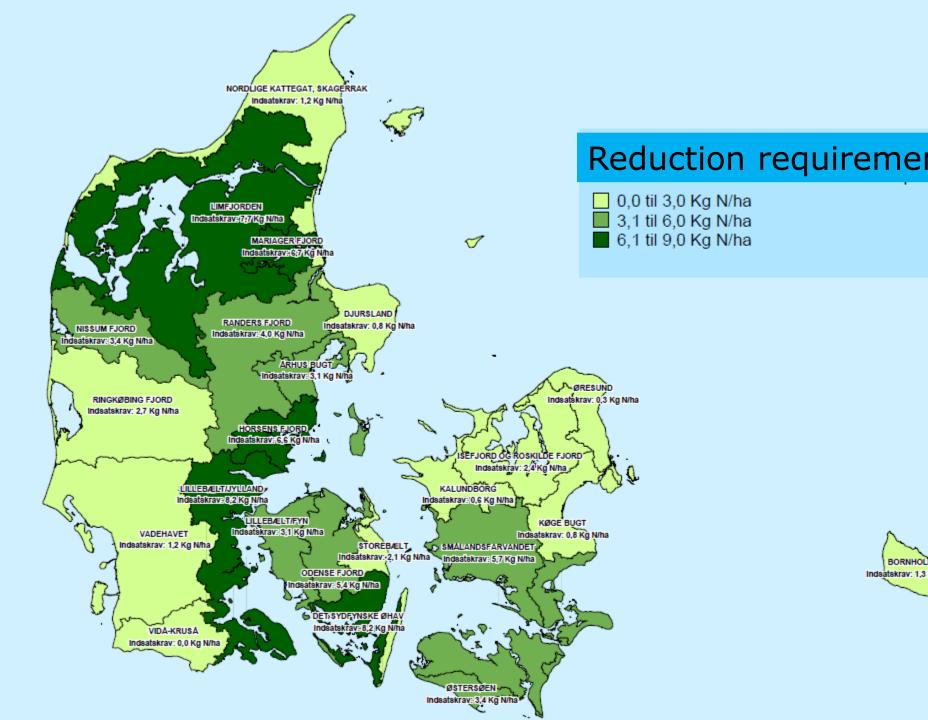
University of Copenhagen

E-mail: Brian@ifro.ku.dk



Content

- ✓ Present legislation
- ✓ 2 models for future regulation
- ✓ Environmental economic norms in Limfjorden
- ✓ National analysis of specific regulation

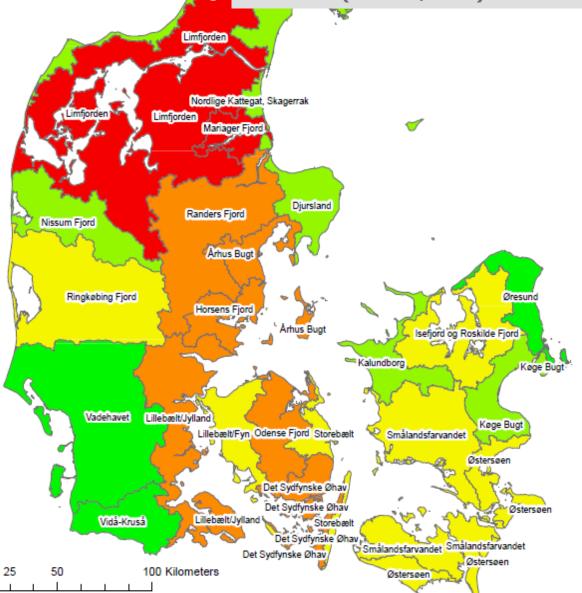


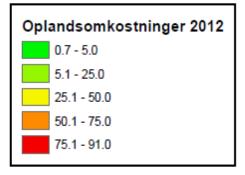
Where are we today?

- ✓ Current regulation is based on total Nnorms which vary with crop, soil type and use of irrigation
- ✓ The N-norm is given at the farm level and so exchange between fields do occur
- ✓ The variation in marginal value between farms is relative limited and so the incentive for exchange/fraud is limited.
- ✓ Under optimal N-norms have increased utilisation of N in organic manure (high requirements)

BORNHOL

Indeatskray: 1,3




Omkostninger ved Vandplaner (mio. kr.)

Onikostininger ved	Variable	1101 (11111	71 ((11)		
Virkemiddel	Areal	Tons N	Omk.	Omk. stat	Kr./
			Erhvev	(mio. kr.)	kg N
			(mio. kr.)		
Efterafgrøder	50.000	690	24		35
Nye efterafgrøder	140.000	1.706	68		39
Ingen jordbearbejdning	110.000	740	1		1
Omlægning af græs	15.000	230	7		30
Normsystemet		1.008	35		35
Randzoner	50.000	2.500		96	37
Vådområder	10.000	1.131		62	55
Reduceret grødeskæring	30.000			52	
I alt		8.034	135	210	43

- Large variation in costs
- Flexibility reduces the costs

Model 1: Farm Economic model

Norm is based on:

Crop and Soil type

Retention groups

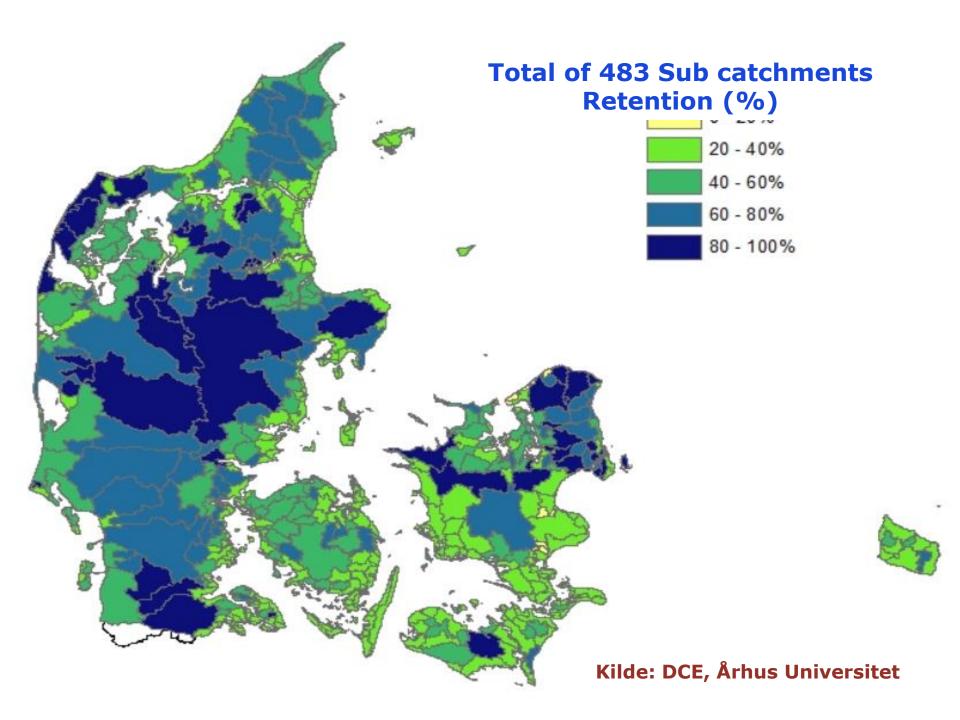
N-reduction required in a given catchment

Variation in crop N-leaching is not included

Same N-norm reduction for all crops in the region

N-norms will be e.g. 65-100% of economic optimum

Can be combined with farm specific measures (catalogue shows effect) Easier administrative approach


The preferred road

Example of possible regulation based on retention (3 groups) and reduction requirement (3 groups)

Retention (%)	Large reduction requirement	Normal reduction requirement	No reduction requirement (V3)
0 - 50	N-class 5	N-class 2	N-class 0
	(e.g 65%)	(e.g. 80%)	(100 %)
50 -75	N-class 4	N-class 1	N-class 0
	(e.g. 75%)	(e.g. 90%)	(100 %)
75 - 100	N-class 3	N-class 0	N-class 0
	(e.g 85%)	(100 %)	(100 %)

M2: Environmental economic norms

N-Norms are based on the same marginal cost of N-loss to the environment for all crops Based on knowledge of :

N-loss from each crop

N-retention for each field / farm (see map)

Loss of income from each crop based on a production function

N-norms can be combined with additional measures (catalogue shows effect)

More difficult administrative approach

Calculations for NLK

- ✓ Limfjorden analysis showing the difference between the current norm system and the possibilities in the M2 model (not with all area measures)
- ✓ Starting point is an N-loss of 12.900 tons
- ✓ Area 500.000 ha
- √ 152 sup-catchments (3.400 ha each)
- √ 11,000 farms and 23,000 units
- √ 12 crops and 5 soil types
- ✓ Livestock, irrigation, organic farming and soil preparation methods not included

Calculations for NLK - 2

- ✓ N-leaching for the different crops are similar in the calculations (55 kg N/ha) although lower for grass and higher for wheat and barley after certain crops.
- ✓ Land can be taken out if the income is low and so a subsidy is given
- ✓ N-norms are applied were they are given !!
- ✓ Lower norms could replace the "loved" riparian zones along streams, but it is not easy as they have zero-retention.

The effect of different models -30% N in Limfjorden

	=	
	Trad. Norm	Env. Econ
	system	Norms
N-norm (kg N/ha)	38	71
Set a side (% of area)	7%	5%
Catch crops (% of area)	17%	13%
N-value (DKK/kg N)	14	11
DBII profit (DKK/ha)	519	802

Costly with both methods, but lower than benefits! (Jensen et al., 2013)

Different reduction requirements using the same environmental cost (140 kr. pr. kg N)

	Sandjord			Lerjord				
	Hved e	Hvede	Vårby g	Vinter byg	Hvede	Hvede	Vårbyg	Vinter byg
Norm i dag Kg N/ha	154	127	115	140	166	139	122	151
Retention 80%	-15%	-13%	-22%	-22%	-5%	-4%	-11%	-10%
Retention 25%	-63%	-65%	-82%	-78%	-43%	-42%	-56%	-51%

Marginal value DKK pr. kg N to the field with or without trading

	Sandjord		Lerjord	
Retention	80%	25%	80%	25%
Base line	6,0	6,0	6,0	6,0
Ideel	12,3	22,2	11,9	22,2
Trading	17,2	17,2	17,2	17,2

- Increased difference in marginal value
- Trading will decrease farmers costs, but increase N-norm reduction requirement

30% reduction in N-losses based on Norms

Set-a-side is mainly on sandy soil

N-norms are very low on low retention areas when using environmental norms.

Large variation in value of N when using env. norms (20 – 0 DKK).

N-application in areas with low retention is close to optimal (85%-95%).

Some low retention areas will not be cropped

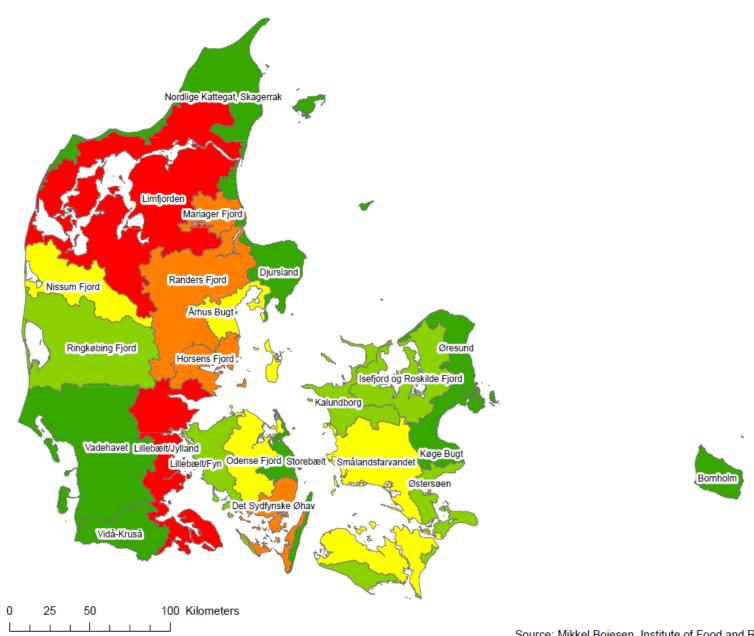
Economic gain with environmental norms on high retention areas, but a loss on low retention areas.

20% will have a clear gain and 30% a loss and the rest a small gain.

Measures analysis Limfjorden	Average Retention in catchment (ha)	SMART Location according to retention (ha)
More energy crops (ha)	11.800	9.500
Wetlands (ha)	5.700	5.700
Reduced N-norms (10%) (ha)	475.000	324.000
Higher utillisation of N in manure after degistation (20%) (ha)	425.000	286.000
More catch crops (ha)	6.000	6.000
Mellemafgrøder (ha)	44.200	21.000
Set a side high land (ha)	29.000	35.000
Set a side – low areas (ha)	48.000	25.000
Total costs (mio. kr.)	400	300

National analysis (further reduction of 10.000 tons N)

Measures	Average Retention in catchment (ha)	SMART Location according to retention (ha)
More energy crops (ha)	24.390	18.200
Wetlands (ha)	14.200	14.500
Reduced N-norms (10%) (ha)	1.320.400	906.900
Higher utillisation of N in manure after degistation (20%) (ha)	1.146.600	893.600
More catch crops (ha)	81.400	79.400
Mellemafgrøder (ha)	44.200	35.000
Set a side high land (ha)	115.000	109.600
Set a side – low areas (ha)	91.300	55.450
Total costs (mio. kr.)	900	800



Thought on national results

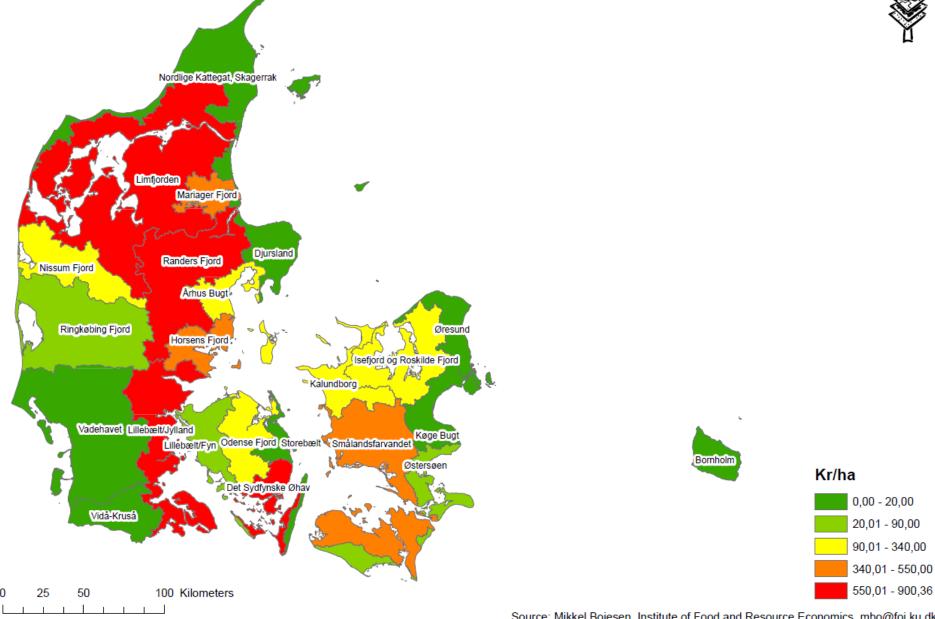
- ✓ The first 9,000 tons N cost 130 million DK or 40 DKK/ kg N.
- ✓ The next 10,000 tons N cost around 800–
 1,000 million DKK or 80-100 DKK pr. kg N
- ✓ Some catchments are relative homogeneous why the SMART solution is almost the same as the average solution
- ✓ Measures in areas with a retention of 80-100% are often left out
- ✓ Low laying areas is not enough
- ✓ Set a side can affect livestock production in some areas

Omkostninger (kr/ha) - SMART

Kr/ha

0,00 - 20,00

20,01 - 90,00


90,01 - 340,00

340,01 - 550,00

550,01 - 858,82

Omkostninger (kr/ha) - Gennemsnit

Source: Mikkel Bojesen, Institute of Food and Resource Economics, mbo@foi.ku.dk

Thoughts about site specific regulation

- ✓ Detailed regulation requires detailed data with an accepted level of certainty
- ✓ The data uncertainty has to be accepted by the farming sector (not lawsuits)
- ✓ The higher heterogeneity there is in a catchment the larger are the likely benefits
- ✓ In the NICA project we work with a 500*500 meter pixels (25 ha)
- ✓ ..but the larger retention groups (1.500 ha) the larger certainty that the retention is right lower farm effect.

Thoughts about site specific regulation

- ✓ Detailed N-application at field level requires GPS technology to be used in practice (division of fields is not likely)
- ✓ Larger heterogeneity increases the variation in farm economic value of N and hence desire to redistribute N
- ✓ This redistribution can be legal or illegal
- ✓ The intention is to combine area specific N-norms with a catalogue of measures which effect will be farm specific.
- ✓ Positive attitude required it will not be 100% perfect from the beginning ☺

See more on www.IFRO.ku.dk

