Fact sheet: Spatially targeted strategy

-a method for nitrogen load reduction from agriculture

Summary

Reducing nitrogen (N) loads from agriculture to the aquatic environments in Denmark have so far been based on general measures to increase N use efficiency, but these have not been sufficient to achieve the environmental objectives without affecting agricultural production. A new spatially targeted regulation is under development that focuses on cost-effective use of measures according to spatial variability in groundwater N-reduction. A key analysis tool in this respect is spatially differentiated scenario analysis to explore reductions in N leaching from those arable lands, which contribute most to the N-loadings. This could be possible either through reducing the source N loading from the root zone or through enhancing the N reduction.

Spatially differentiated approach

A method for two Danish catchments was developed comprising (i) Relocation of existing agricultural practices based N-reduction the total (i.e. on groundwater and surface water Nreduction) and available spatial constraints. In this way, highest Nleaching value is relocated to the area with highest N-reduction and vice versa (Fig.1A). (ii) Cover crops (CC) application on potential areas based on Danish Nleaching reduction values specified for CC (Table 1, Fig 1.B), (iii) Set-a-side application on areas with high N-load by replacing the N-leaching value with the Danish standard value for set-a-side of 12 (kg N/ha) (Fig 1.C). Total N-reduction maps were used in two scales for N-load calculation; at sub catchment scale and at grid unit scale.

 Table 1. Danish standard values of N-leaching reduction (kg N/ha) specified for CC based on soil type and livestock density (LU/ha)

	LU/ha				
		0.8	>0.8		
Soil type	Clay	Sand	Clay	Sand	
N-Leaching reduction	16	34	28	46	
Average value	25		37		

dNmark research alliance

Aims

To address the possibilities of targeting measures to reduce N leaching losses from those parts of the landscape, which contribute most to the N-loadings.

To analyze the need for agricultural land-based measures under different spatial constraints and scales to achieve targeted N-load reduction of 20% and 40% to coastal waters.

Figure 1. Components of spatially targeting approach

Scenario design

To construct the scenarios, N-leaching input as main target to change was considered and resulted in 10 spatially targeted scenarios (Table 2). Scenario I includes spatially targeted measures on baseline N-leaching and scenario II considers application of measures on relocated N leaching.

Results

Spatial constraints N-leaching for relocation will affect the effectiveness of Nload reduction, and the highest N-load reduction was achieved where less constraints were considered (Fig. 2). The ange effectiveness of spatially differentiated measures in term of set-a-side area in Odense catchment were relatively greater compared to Norsminde catchment (Fig. 3). Investigation of each scenario individually 💈 indicated using fine spatial N-reduction I-loa map is more effective compared to using sub-catchment scale N-reduction map in terms of N-load reduction using set-a-side.

Recommendations

The extent to which more knowledge on Nreduction map can be used to assess the consequences on set-a-side to achieve targeted N-load reductions and to be used in future N-regulation is an open question. Therefore, it has been suggested to clarify the uncertainty in N-load reductions and set-a-side from scenarios analyzed based on N-reduction maps.

Table 2. Description of spatially differentiated scenarios	Table 2. Descripti	ion of spatially diffe	rentiated scenarios
--	--------------------	------------------------	---------------------

Scenario Business as usual		Spatial pattern in N-leaching based on different constraints			Targeted measure		N-load reduction
		Groundwater N-reduction	Soil type	Farm boundary		Cover crops	20
		(343)	2	÷.	2		(a)
I: Measures application on baseline N-leaching	1	No	No	No	Yes	No	20%- 40%
	2	No	No	No	Yes	Yes	20%- 40%
II: Measure application on spatially relocated N-leaching	1	Yes	No	No	Yes	No	20%- 40%
	2	Yes	No	No	Yes	Yes	20%-40%
	3	Yes	Yes	No	Yes	No	20%-40%
	4	Yes	Yes	No	Yes	Yes	20%-40%
	5	Yes	No	Yes	Yes	No	20%- 40%
	6	Yes	No	Yes	Yes	Yes	20%- 40%
	7	Yes	Yes	Yes	Yes	No	20%- 40%
	8	Ves	Ves	Ves	Ves	Ves	20%- 40%

Figure 3. Set-a-side area in percentage of the agricultural areas for 20% N-load reduction target (a and b for Norsminde and c and d for Odense catchments). In some of the scenarios only set-a-side measure was considered (Left) and in some others both set-a-side and C.C (Right)